The Interplay of Errors and Weights in Image Recognition by Artificial Neural Networks
Su Panodyssey puoi leggere fino a 30 pubblicazioni al mese senza effettuare il login. Divertiti 29 articles da scoprire questo mese.
Per avere accesso illimitato ai contenuti, accedi o crea un account cliccando qui sotto: è gratis!
Accedi
The Interplay of Errors and Weights in Image Recognition by Artificial Neural Networks
Optimizing Accuracy and Performance.
Artificial Neural Networks (ANNs) have brought a revolutionary advancement in the image recognition feature of the machine, making it possible for the machines to do almost an expert level perfect jobs for identifying and categorizing images. However, their effectiveness during image recognition is anchored on the ability to manage errors and weights of an ANN. While errors describe misinterpretation of images, weights define strength between individual synapses of neurons in the network. This article looks at the deep meaning of errors and weights in relation to ANNs’ image recognition and explains all sorts of errors, the extent of impact that weights have on performance, and how to perfect both definitively.
This as an inherent characteristic of ANNs means that errors can happen, for a range of reasons such as – noise in the data, insufficient training or over-training.
Within the domain of im
Questo è un articolo Prime
Per accedervi, iscriviti alla Creative Room Artificial Intelligence di Ed-It
Vantaggi dell'iscrizione:
Accesso completo a contenuti esclusivi e archivi
Accesso preferenziale a futuri contenuti
Commenta le pubblicazioni dell'autore e unisciti alla sua community
Ricevi una notifica per ogni nuovo articolo
Iscriversi significa sostenere un autore a lungo termine
Iscriviti alla Creative Room