The Interplay of Errors and Weights in Image Recognition by Artificial Neural Networks
En Panodyssey, puedes leer hasta 30 publicaciones al mes sin iniciar sesión. Disfruta de 29 articles más para descubrir este mes.
Para obtener acceso ilimitado, inicia sesión o crea una cuenta haciendo clic a continuación, ¡es gratis!
Inicar sesión
The Interplay of Errors and Weights in Image Recognition by Artificial Neural Networks
Optimizing Accuracy and Performance.
Artificial Neural Networks (ANNs) have brought a revolutionary advancement in the image recognition feature of the machine, making it possible for the machines to do almost an expert level perfect jobs for identifying and categorizing images. However, their effectiveness during image recognition is anchored on the ability to manage errors and weights of an ANN. While errors describe misinterpretation of images, weights define strength between individual synapses of neurons in the network. This article looks at the deep meaning of errors and weights in relation to ANNs’ image recognition and explains all sorts of errors, the extent of impact that weights have on performance, and how to perfect both definitively.
This as an inherent characteristic of ANNs means that errors can happen, for a range of reasons such as – noise in the data, insufficient training or over-training.
Within the domain of im
Este es un artículo Prime
Para poder acceder, suscríbete a la Creative Room Artificial Intelligence de Ed-It
Beneficios de los miembros:
Acceso completo a contenido y archivos exclusivos
Acceso anticipado a contenido futuro
Comenta las publicaciones del autor y únete a la comunidad de seguidores
Recibe una notificación por cada artículo nuevo
Suscribirse significa apoyar a un autor a largo plazo
Suscríbete a la Creative Room